Please register to get freely available access to our next webinars
Harnessing the power of interdisciplinary expertise to solve modern environmental problems
You can find recordings of past webinars in our Youtube Channel
We invite you to register and participate in the webinar
Upcoming Events
9:00 am (CT)
U.S.A.
INRIA Paris
Choose France Chair in AI & Research
University of Colorado Boulder
Associate Professor
Machine Learning for Climate Change and Environmental Sustainability
Abstract: Despite the scientific consensus on climate change, drastic uncertainties remain. Crucial questions about regional climate trends, changes in extreme events, such as heat waves and mega-storms, and understanding how climate varied in the distant past, must be answered in order to improve predictions, assess impacts and vulnerability, and inform mitigation and sustainable adaptation strategies. Machine learning can help answer such questions and shed light on climate change. I will give an overview of our climate informatics research, focusing on challenges in learning from spatiotemporal data, along with semi- and unsupervised deep learning approaches to studying rare and extreme events, and precipitation and temperature downscaling.
Bio: Claire Monteleoni is Choose France Chair in AI and Directrice de Recherche at INRIA Paris, an Associate Professor in the Department of Computer Science at the University of Colorado Boulder, and the founding Editor in Chief of Environmental Data Science, a Cambridge University Press journal, launched in December 2020. She joined INRIA in 2023 and has previously held positions at University of Paris-Saclay, CNRS, George Washington University, and Columbia University. She completed her PhD and Masters in Computer Science at MIT and was a postdoc at UC San Diego. She holds a Bachelor’s in Earth and Planetary Sciences from Harvard. Her research on machine learning for the study of climate change helped launch the interdisciplinary field of Climate Informatics. She co-founded the International Conference on Climate Informatics, which turns 12 years old in 2023, and has attracted climate scientists and data scientists from over 20 countries and 30 U.S. states. She gave an invited tutorial: Climate Change: Challenges for Machine Learning, at NeurIPS 2014. She currently serves on the NSF Advisory Committee for Environmental Research and Education.
Next TIES Webinar
April 21, 2023 - 11 am, Central Time, US
Steve Sain
Joint RSS Environmental Stats Section (ESS) and TIES speaker
TBD (TBD)
Hayley Fowler, Newcastle University